Py之pixellib:pixellib库的简介、安装、经典案例之详细攻略

Py之pixellib:pixellib库的简介、安装、经典案例之详细攻略

 

 

 

目录

pixellib库的简介

1、基础案例

pixellib库的安装

pixellib库的经典案例

1、使用pixellib进行语义分割


 

 

 

pixellib库的简介

        pixellib是一个库执行图像分割。它支持两种主要类型的图像分割:语义分割和实例分割,只需几行代码就可以实现语义分段和实例分段。特的特点如下:

  • 高质量反色矢量/光栅图形
  • 多像素格式:RGB, BGR, ARGB, ABGR, RGBA, BGRA 8 / 15 / 16 / 24 / 32深度
  • 重量轻100% C实现
  • MMX / SSE2图形优化

官网https://github.com/ayoolaolafenwa/PixelLib
案例https://github.com/skywind3000/pixellib
whl文件https://github.com/ayoolaolafenwa/PixelLib/releases/tag/0.1.0

 

1、基础案例

Image Transform
图像变换
Anti Aliasing
抗锯齿
Image Drawing
图像绘制
Geometry Render
几何渲染
Image Warp
图像扭曲
High Quality Render
高质量渲染

 

 

 

 

pixellib库的安装

pip install pixellib

 

 

 

 

pixellib库的经典案例

1、使用pixellib进行语义分割

pixellib使用Deeplabv3+框架实现,实现语义分割。采用在pascalvoc上预训练的Xception模型进行语义切分。基于xception模型的语义分割在pascalvoc上进行预处理。

  • 用于执行语义分段的类是从pixellib导入的,我们创建了该类的一个实例。
  • 我们调用函数来加载在pascal voc上训练的xception模型。可以从这里下载xception模型。
  • 这是对图像执行分割的代码行,分割是在pascalvoc的颜色格式中完成的。这个函数有两个参数:   
    path_to_image:要设置的映像的路径。 
    path_to_output_image:保存输出图像的路径。映像将保存在当前工作目录中。
import pixellib
from pixellib.semantic import semantic_segmentation

segment_image = semantic_segmentation()
segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5") 
segment_image.segmentAsPascalvoc("path_to_image", output_image_name = "path_to_output_image")

 

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值