Py之pycocotools:pycocotools库的简介、安装、使用方法之详细攻略

Py之pycocotools:pycocotools库的简介、安装、使用方法之详细攻略

 

 

 

目录

pycocotools库的简介

pycocotools库的安装

pycocotools库的使用方法

1、from pycocotools.coco import COCO

2、输出COCO数据集信息并进行图片可视化


 

 

pycocotools库的简介

       pycocotools是什么?即python api tools of COCO。COCO是一个大型的图像数据集,用于目标检测、分割、人的关键点检测、素材分割和标题生成。这个包提供了Matlab、Python和luaapi,这些api有助于在COCO中加载、解析和可视化注释。请访问http://cocodataset.org/,可以了解关于COCO的更多信息,包括数据、论文和教程。COCO网站上也描述了注释的确切格式。Matlab和PythonAPI是完整的,LuaAPI只提供基本功能。
       除了这个API,请下载COCO图片和注释,以便运行演示和使用API。两者都可以在项目网站上找到。

  • -请下载、解压缩并将图像放入:coco/images/
  • -请下载并将注释放在:coco/annotations中/

COCO API http://cocodataset.org/

 

 

pycocotools库的安装

pip install pycocotools==2.0.0

 

 

 

 

pycocotools库的使用方法

1、from pycocotools.coco import COCO

__author__ = 'tylin'
__version__ = '2.0'
# Interface for accessing the Microsoft COCO dataset.

# Microsoft COCO is a large image dataset designed for object detection,
# segmentation, and caption generation. pycocotools is a Python API that
# assists in loading, parsing and visualizing the annotations in COCO.
# Please visit http://mscoco.org/ for more information on COCO, including
# for the data, paper, and tutorials. The exact format of the annotations
# is also described on the COCO website. For example usage of the pycocotools
# please see pycocotools_demo.ipynb. In addition to this API, please download both
# the COCO images and annotations in order to run the demo.

# An alternative to using the API is to load the annotations directly
# into Python dictionary
# Using the API provides additional utility functions. Note that this API
# supports both *instance* and *caption* annotations. In the case of
# captions not all functions are defined (e.g. categories are undefined).

# The following API functions are defined:
#  COCO       - COCO api class that loads COCO annotation file and prepare data structures.
#  decodeMask - Decode binary mask M encoded via run-length encoding.
#  encodeMask - Encode binary mask M using run-length encoding.
#  getAnnIds  - Get ann ids that satisfy given filter conditions.
#  getCatIds  - Get cat ids that satisfy given filter conditions.
#  getImgIds  - Get img ids that satisfy given filter conditions.
#  loadAnns   - Load anns with the specified ids.
#  loadCats   - Load cats with the specified ids.
#  loadImgs   - Load imgs with the specified ids.
#  annToMask  - Convert segmentation in an annotation to binary mask.
#  showAnns   - Display the specified annotations.
#  loadRes    - Load algorithm results and create API for accessing them.
#  download   - Download COCO images from mscoco.org server.
# Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
# Help on each functions can be accessed by: "help COCO>function".

# See also COCO>decodeMask,
# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds,
# COCO>getImgIds, COCO>loadAnns, COCO>loadCats,
# COCO>loadImgs, COCO>annToMask, COCO>showAnns

# Microsoft COCO Toolbox.      version 2.0
# Data, paper, and tutorials available at:  http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.
# Licensed under the Simplified BSD License [see bsd.txt]

 

2、输出COCO数据集信息并进行图片可视化

from pycocotools.coco import COCO
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np
import random


#1、定义数据集路径
cocoRoot = "F:/File_Python/Resources/image/COCO"
dataType = "val2017"
annFile = os.path.join(cocoRoot, f'annotations/instances_{dataType}.json')
print(f'Annotation file: {annFile}')

#2、为实例注释初始化COCO的API
coco=COCO(annFile)


#3、采用不同函数获取对应数据或类别
ids = coco.getCatIds('person')[0]    #采用getCatIds函数获取"person"类别对应的ID
print(f'"person" 对应的序号: {ids}') 
id = coco.getCatIds(['dog'])[0]      #获取某一类的所有图片,比如获取包含dog的所有图片
imgIds = coco.catToImgs[id]
print(f'包含dog的图片共有:{len(imgIds)}张, 分别是:',imgIds)


cats = coco.loadCats(1)               #采用loadCats函数获取序号对应的类别名称
print(f'"1" 对应的类别名称: {cats}')

imgIds = coco.getImgIds(catIds=[1])    #采用getImgIds函数获取满足特定条件的图片(交集),获取包含person的所有图片
print(f'包含person的图片共有:{len(imgIds)}张')



#4、将图片进行可视化
imgId = imgIds[10]
imgInfo = coco.loadImgs(imgId)[0]
print(f'图像{imgId}的信息如下:\n{imgInfo}')

imPath = os.path.join(cocoRoot, 'images', dataType, imgInfo['file_name'])                     
im = cv2.imread(imPath)
plt.axis('off')
plt.imshow(im)
plt.show()


plt.imshow(im); plt.axis('off')
annIds = coco.getAnnIds(imgIds=imgInfo['id'])      # 获取该图像对应的anns的Id
print(f'图像{imgInfo["id"]}包含{len(anns)}个ann对象,分别是:\n{annIds}')
anns = coco.loadAnns(annIds)

coco.showAnns(anns)
print(f'ann{annIds[3]}对应的mask如下:')
mask = coco.annToMask(anns[3])
plt.imshow(mask); plt.axis('off')

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值