Python之nyoka:nyoka库函数的简介、安装、使用方法之详细攻略

Python之nyoka:nyoka库函数的简介、安装、使用方法之详细攻略

 

 

 

 

 

目录

nyoka库函数的简介

1、Nyoka的核心模块

2、模型

(1)、基础模型

(2)、LightGBM:

(3)、XGBoost (version <= 0.90):

(4)、Statsmodels (version <= 0.11.1):

3、预处理

nyoka库函数的安装

nyoka库函数的使用方法

1、Nyoka为每个库包含独立的导出程序,例如scikit-learn、keras、xgboost等。

2、基于StandardScaler的决策树分类器案例

3、LGBMClassifier → PMML

4、基于nyoka库利用LGBMClassifier模型实现对iris数据集训练、保存为pmml模型并重新载入pmml模型进而实现推理


 

 

 

 

nyoka库函数的简介

     Nyoka是一个全面支持最新PMML (PMML 4.4)标准的Python库。使用Nyoka,数据科学家可以出口大量的机器学习和深度学习从流行的Python框架PMML模型通过使用任何众多包括现成的出口商或通过创建自己的专业出口商/个人模型类型通过构造函数的调用序列。
     除了大约500 Python类,每个封面PMML标签和所有构造函数参数/属性中定义的标准,Nyoka还提供了越来越多的方便的类和函数,简化数据科学家的生活例如通过阅读或编写任何PMML文件在一行代码中你最喜欢的Python环境。
     Nyoka提供了完整的Python源代码,扩展的HTML类/函数文档,以及越来越多的Jupyter笔记本教程,帮助您熟悉Nyoka支持您使用PMML作为您最喜欢的数据科学传输文件格式的方式。

Nyoka文档https://softwareag.github.io/nyoka/

 

1、Nyoka的核心模块

  • Statsmodels Exporter Module
  • Keras Exporter Module
  • RetinaNet Exporter Module
  • LightGBM Exporter Module
  • Pre-Processing Exporter Module
  • Scikit-Learn Exporter Module
  • XGBoost Exporter Module
  • ExponentialSmoothing Exporter Module
  • Nyoka's Pre-Processing Module
  • Enums Module

 

2、模型

(1)、基础模型

(2)、LightGBM:

(3)、XGBoost (version <= 0.90):

(4)、Statsmodels (version <= 0.11.1):

 

 

 

3、预处理

 

 

 

 

nyoka库函数的安装

pip install nyoka
pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple nyoka

 

 

 

 

nyoka库函数的使用方法

1、Nyoka为每个库包含独立的导出程序,例如scikit-learn、keras、xgboost等。

libraryexporter
scikit-learnskl_to_pmml
xgboostxgboost_to_pmml
lightgbmlgbm_to_pmml
kerasKerasToPmml
statsmodelsStatsmodelsToPmml & ExponentialSmoothingToPmml
retinanetRetinanetToPmml

 

2、基于StandardScaler的决策树分类器案例

 from sklearn.pipeline import Pipeline
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.preprocessing import StandardScaler
 pipeline_obj = Pipeline([
         ("scaler",StandardScaler()),
         ("model",DecisionTreeClassifier())
 ])
 
from sklearn.dataset import load_iris
 iris_data = load_iris()
 X = iris_data.data
 y = iris_data.target
 features = iris_data.feature_names
 pipeline_obj.fit(X,y)
 
 from nyoka import skl_to_pmml
 skl_to_pmml(pipeline=pipeline_obj,col_names=features,target_name="species",pmml_f_name="decision_tree.pmml")

 

 

 

3、LGBMClassifier → PMML

import pandas as pd
from sklearn import datasets
from sklearn.pipeline import Pipeline
from lightgbm import LGBMRegressor,LGBMClassifier
from nyoka import lgb_to_pmml


iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data,columns=iris.feature_names)

target = 'Species'
irisd[target] = iris.target
features = irisd.columns.drop(target)


#保存模型
pipeline_obj = Pipeline([ ('lgbmc',LGBMClassifier())])
pipeline_obj.fit(irisd[features],irisd[target])
lgb_to_pmml(pipeline_obj,features,target,"lgbmc_pmml.pmml")


 
#读入数据进行测试
auto = pd.read_csv('auto-mpg.csv')
X = auto.drop(['mpg','car name'], axis=1)
y = auto['mpg']

feature_names = [name for name in auto.columns if name not in ('mpg','car name')]
target_name='mpg'

pipeline_obj = Pipeline([ ('lgbmr',LGBMRegressor()) ])
pipeline_obj.fit(auto[feature_names],auto[target_name])
lgb_to_pmml(pipeline_obj,feature_names,target_name,"lgbmr_pmml.pmml")

 

4、基于nyoka库利用LGBMClassifier模型实现对iris数据集训练、保存为pmml模型并重新载入pmml模型进而实现推理

ML之nyoka:基于nyoka库利用LGBMClassifier模型实现对iris数据集训练、保存为pmml模型并重新载入pmml模型进而实现推理

 

 

 

 

 

 

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值