Py之Numpy:Numpy库中常用函数的简介、应用之详细攻略

Py之Numpy:Numpy库中常用函数的简介、应用之详细攻略

 

目录

Numpy库中常用函数的简介、应用

1、X, Y = np.meshgrid(X, Y)


 

 

相关文章
Py之Numpy:Numpy库简介、安装、使用方法、案例应用之详细攻略​​​​​​​
Py之Numpy:Numpy库中常用函数的简介、应用之详细攻略

Numpy库中常用函数的简介、应用

1、X, Y = np.meshgrid(X, Y)

meshgrid Found at: numpy.lib.function_base
Return coordinate matrices from coordinate vectors.
    
    Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given  one-dimensional coordinate arrays x1, x2,..., xn.
    
    .. versionchanged:: 1.9
    1-D and 0-D cases are allowed.
    
    Parameters
    ----------
    x1, x2,..., xn : array_like
    1-D arrays representing the coordinates of a grid.
    indexing : {'xy', 'ij'}, optional
    Cartesian ('xy', default) or matrix ('ij') indexing of output.
    See Notes for more details.
    
    .. versionadded:: 1.7.0
    sparse : bool, optional
    If True a sparse grid is returned in order to conserve  memory. Default is False.
    
    .. versionadded:: 1.7.0
    copy : bool, optional. If False, a view into the original arrays are returned in 
     order to  conserve memory.  Default is True.  Please note that  ``sparse=False, copy=False`` will likely return noncontiguous arrays.  Furthermore, more than one element of a   broadcast array may refer to a single memory location.  If you need to  write to the arrays, make copies first.
    
    .. versionadded:: 1.7.0
    
    Returns
    -------
    X1, X2,..., XN : ndarray
    For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` ,
    return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij'   or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy'  with the elements of `xi` repeated to fill the matrix along  the first dimension for `x1`, the second for `x2` and so on.
    
    Notes
    -----
    This function supports both indexing conventions  through the indexing keyword argument.  Giving the string 'ij' returns a  meshgrid with matrix indexing, while 'xy' returns a meshgrid with   Cartesian indexing.
    In the 2-D case with inputs of length M and N, the  outputs are of shape  (N, M) for 'xy' indexing and (M, N) for 'ij' indexing.  In the   3-D case with inputs of length M, N and P, outputs are of shape   (N, M, P) for   'xy' indexing and (M, N, P) for 'ij' indexing.  The  difference is  illustrated by the following code snippet::
    
    xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij')
    for i in range(nx):
    for j in range(ny):
    # treat xv[i,j], yv[i,j]
    
    xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
    for i in range(nx):
    for j in range(ny):
    # treat xv[j,i], yv[j,i]
    
    In the 1-D and 0-D case, the indexing and sparse  keywords have no effect.
    
    See Also
    --------
    index_tricks.mgrid : Construct a multi-dimensional    "meshgrid" using indexing notation.
    index_tricks.ogrid : Construct an open multi-dimensional   "meshgrid" using indexing notation.

坐标向量返回坐标矩阵


建立N-D坐标阵列,在N-D网格上对N-D标量/向量场进行向量化计算,给定一维坐标阵列x1, x2,…,xn。

. .versionchanged:: 1.9
允许1-D和0-D。

参数
 ----------
x1, x2,…, xn: array_like
表示网格坐标的一维数组。
索引:{'xy', 'ij'},可选
Cartesian ('xy',默认)或矩阵('ij')索引的输出。
参见注释了解更多细节。

. .versionadded: 1.7.0
稀疏:bool,可选
如果为真,则返回一个稀疏网格以保存内存。默认是假的。

. .versionadded: 1.7.0
复制:bool,可选。如果为假,则返回原始数组的视图
为了保存记忆。默认是正确的。请注意,' ' sparse=False, copy=False ' '将可能返回不相邻的数组。此外,广播数组中的多个元素可以引用单个内存位置。如果需要对数组进行写入,请首先进行复制。

. .versionadded: 1.7.0

返回
 -------
X1, X2,…XN: ndarray
对于向量“x1”,“x2”,…, 'xn'加上length ' ' ' Ni=len(xi) ' ',
返回' ' (N1, N2, N3,…Nn) ' '形数组如果索引='ij'或' ' (N2, N1, N3,…Nn) ' '形数组如果索引='xy'与元素' xi '重复填充矩阵沿第一个维度为' x1 ',第二个为' x2 ',以此类推。

笔记
 -----
这个函数通过索引关键字参数支持两种索引约定。给出字符串'ij'返回一个带矩阵索引的meshgrid,而'xy'返回一个带笛卡尔索引的meshgrid。
在输入长度为M和N的二维情况下,输出的形状为(N, M),表示“xy”索引,(M, N)表示“ij”索引。在输入长度为M、N和P的3-D情况下,输出的形状(N、M、P)表示“xy”索引,(M、N、P)表示“ij”索引。区别如下面的代码片段所示::

xv yv = np。meshgrid(x, y, sparse=False, index ='ij')
i在range(nx)内:
j in range(ny):
治疗xv[i,j], yv[i,j]

xv yv = np。meshgrid(x, y, sparse=False, index ='xy')
i在range(nx)内:
j in range(ny):


在1-D和0-D情况下,索引和稀疏关键字没有影响。。

另请参阅
--------
index_tricks。mgrid:使用索引符号构造一个多维“meshgrid”。
index_tricks。ogrid:使用索引符号构造一个开放的多维“meshgrid”。

    Examples
    --------
    >>> nx, ny = (3, 2)
    >>> x = np.linspace(0, 1, nx)
    >>> y = np.linspace(0, 1, ny)
    >>> xv, yv = np.meshgrid(x, y)
    >>> xv
    array([[ 0. ,  0.5,  1. ],
    [ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.,  0.,  0.],
    [ 1.,  1.,  1.]])
    >>> xv, yv = np.meshgrid(x, y, sparse=True)  # make 
     sparse output arrays
    >>> xv
    array([[ 0. ,  0.5,  1. ]])
    >>> yv
    array([[ 0.],
    [ 1.]])
    
    `meshgrid` is very useful to evaluate functions on a grid.
    
    >>> x = np.arange(-5, 5, 0.1)
    >>> y = np.arange(-5, 5, 0.1)
    >>> xx, yy = np.meshgrid(x, y, sparse=True)
    >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
    >>> h = plt.contourf(x,y,z)
 


 

 

 

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值