Python之joblib:joblib库的简介、安装、使用方法之详细攻略

Python之joblib:joblib库的简介、安装、使用方法之详细攻略

 

 

 

目录

joblib库的简介

joblib库的安装

joblib库的使用方法

1、输出值的透明快速磁盘缓存

2、令人尴尬的并行助手:使它容易编写可读并行代码和调试它迅

3、快速压缩持久化


 

 

joblib库的简介

        Joblib是一组在Python中提供轻量级管道的工具。特别是:

  • 函数的透明磁盘缓存和延迟重新计算(记忆模式)
  • 简单并行计算

        Joblib经过了优化,特别是在处理大型数据时速度更快、更健壮,并且对numpy数组进行了特定的优化。

文档说明https://joblib.readthedocs.io
下载地址https://pypi.python.org/pypi/joblib#downloads
源码地址: https://github.com/joblib/joblib
报告问题https://github.com/joblib/joblib/issues

 

joblib库的安装

pip install joblib

 

 

 

joblib库的使用方法

1、输出值的透明快速磁盘缓存

        Python函数的类似memoize或make的功能,适用于任意Python对象,包括非常大的numpy数组。通过将操作写成一组具有定义良好的输入和输出的步骤,将持久性和流执行逻辑与域逻辑或算法代码分离开来:Python函数。Joblib可以节省他们的计算到磁盘和重新运行,只有在必要时:

>>> from joblib import Memory
>>> cachedir = 'your_cache_dir_goes_here'
>>> mem = Memory(cachedir)
>>> import numpy as np
>>> a = np.vander(np.arange(3)).astype(np.float)
>>> square = mem.cache(np.square)
>>> b = square(a)                                   # doctest: +ELLIPSIS
________________________________________________________________________________
[Memory] Calling square...
square(array([[0., 0., 1.],
       [1., 1., 1.],
       [4., 2., 1.]]))
___________________________________________________________square - 0...s, 0.0min
>>> c = square(a)
>>> # The above call did not trigger an evaluation


2、令人尴尬的并行助手:使它容易编写可读并行代码和调试它迅

>>> from joblib import Parallel, delayed
>>> from math import sqrt
>>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10))
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]


3、快速压缩持久化

        替代pickle,有效地处理包含大数据的Python对象(joblib)。转储& joblib。负载)。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值