Python之sklearn-pmml:sklearn-pmml的简介、安装、使用方法之详细攻略

Python之sklearn-pmml:sklearn-pmml的简介、安装、使用方法之详细攻略

 

 

 

目录

sklearn-pmml的简介

1、分类

2、回归

sklearn-pmml的安装

sklearn-pmml的使用方法

1、保存GBDT模型为pmml文件并载入


 

 

 

 

 

sklearn-pmml的简介

        一个允许将SciKit-Learn估计器序列化到PMML的库。PMML输出。分类器转换器只能操作分类输出,对于每个分类输出变量“varname”,PMML输出包含以下输出:-实例预测标签的分类“varname”-双“varname”。标签'表示给定标签的概率。回归模型PMML输出数值响应变量作为输出变量。支持的模型:

  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • GradientBoostingClassifier
  • RandomForestClassifier

1、分类

分类器转换器只能操作分类输出,对于每个分类输出变量varname, PMML输出包含以下输出:

  • 实例的预测标签的分类varname
  • varname两倍。标签表示一个给定标签的概率

 

2、回归

回归模型PMML输出数值响应变量作为输出变量

 

 

 

sklearn-pmml的安装

pip install sklearn-pmml
pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn-pmml

 

 

sklearn-pmml的使用方法

1、保存GBDT模型为pmml文件并载入

GBDT = GradientBoostingClassifier(random_state=123,max_depth=5,min_samples_split=10)
clf = PMMLPipeline([('vecd', DictVectorizer(sparse=False)), ('classifier', GBDT)])
vec = DictVectorizer(sparse=False)

clf.fit(X_train_dict, y_train)
y_predict = clf.predict(X_test_dict)


print(clf.score(X_test_dict, y_test))
print(classification_report(y_predict, y_test, target_names=['died', 'survivied']))

print(roc_auc_score(y_test,y_predict))

sklearn2pmml(clf, 'Model.pmml', with_repr=True, debug=True)



from pypmml import Model
model=Model.fromFile('Model.pmml')
X = titanic[['pclass', 'age', 'sex',"room"]]
ret=model.predict(X_test);

print(ret)
auc=roc_auc_score(y_test,round(ret['probability(1)']))
print(auc)

 

 

 

 

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值