Python之sklearn-pandas:sklearn-pandas库函数的简介、安装、使用方法之详细攻略
目录
sklearn-pandas库函数的简介
sklearn-pandas模块提供了Scikit-Learn的机器学习方法和pandas风格的数据框架之间的桥梁。特别是,它提供了一种将DataFrame列映射到转换的方法,这些转换稍后将被重新组合为特性。
sklearn-pandas库函数的安装
pip install sklearn-pandas
pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn-pandas
sklearn-pandas库函数的使用方法
1、基础用法
>>> from sklearn_pandas import DataFrameMapper
>>> import pandas as pd
>>> import numpy as np
>>> import sklearn.preprocessing, sklearn.decomposition, \
... sklearn.linear_model, sklearn.pipeline, sklearn.metrics
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> mapper = DataFrameMapper([
... ('pet', sklearn.preprocessing.LabelBinarizer()),
... (['children'], sklearn.preprocessing.StandardScaler())
... ])
2、案例应用
>>> from sklearn.base import TransformerMixin
>>> class DateEncoder(TransformerMixin):
... def fit(self, X, y=None):
... return self
...
... def transform(self, X):
... dt = X.dt
... return pd.concat([dt.year, dt.month, dt.day], axis=1)
>>> dates_df = pd.DataFrame(
... {'dates': pd.date_range('2015-10-30', '2015-11-02')})
>>> mapper_dates = DataFrameMapper([
... ('dates', DateEncoder())
... ], input_df=True)
>>> mapper_dates.fit_transform(dates_df)
array([[2015, 10, 30],
[2015, 10, 31],
[2015, 11, 1],
[2015, 11, 2]])
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。