CV:计算机视觉技术之图像基础知识(二)—图像内核的可视化解释

CV:计算机视觉技术之图像基础知识(二)—图像内核的可视化解释

 

 

 

 

目录

图像内核的可视化解释

测试九种卷积核

官方Demo

DIY图片测试

DIY实时视频测试


 

 

相关文章
CV:计算机视觉技术之图像基础知识(二)—图像内核的可视化解释
CV:计算机视觉技术之图像基础知识(二)—图像内核的可视化解释实现

图像内核的可视化解释

原作者: Victor Powell

          图像内核是一个小的矩阵,用于应用在Photoshop或Gimp中可能发现的效果,如模糊、锐化、轮廓或压纹。它们还被用于机器学习的“特征提取”,一种确定图像最重要部分的技术。在这种情况下,这个过程通常被称为“卷积”(详见卷积神经网络)。

          为了了解它们是如何工作的,让我们从检查一个黑白图像开始。左边的矩阵包含0到255之间的数字,每个数字对应一张人脸图像中一个像素的亮度。大的、颗粒状的图像被放大,以便更容易看到;最后一个图像是“真实”大小。

 

 

 

测试九种卷积核

官方Demo

  • blur
  • bottom sobel 
  • emboss
  • identity 
  • left sobel 
  • outline
  • right sobel 
  • sharpen
  • top sobel

          接下来,看看如何将下面的3x3锐化内核应用到上面的一张脸的图像上。下面,对于左边图像中每3x3个像素块,我们将每个像素乘以核中对应的项,然后求和。这个和就变成了右边图像中的一个新像素。将鼠标悬停在图像上的一个像素上,看看它的值是如何计算的。

blur
bottom sobel 
emboss
identity 
 left sobel 
outline
right sobel 
sharpen
top sobel

          这个过程的一个微妙之处在于如何沿着图像的边缘进行处理。例如,输入图像的左上角只有三个邻居。解决这个问题的一种方法是将原始图像的边缘值扩展一,同时保持新图像的大小不变。在这个演示中,我们将这些值设置为黑色,从而忽略了它们。

 

DIY图片测试

          自己测试,你可以选择不同的核矩阵,看看他们如何影响原始图像或建立你自己的核。如果你的浏览器支持的话,你也可以上传你自己的图片或者使用实时视频。

 

DIY实时视频测试

 

 

 

 

 

 

 

 

 

 

 

 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值