ML之FE:特征工程处理中常用的数据变换(log取对数变换等)之详细攻略
目录
特征工程处理中常用的数据变换(log取对数变换等)之详细攻略
特征工程处理中常用的数据变换(log取对数变换等)之详细攻略
log取对数变换
意义:取对数之后不会改变数据的性质和相关关系,但压缩了变量的尺度。让方差恒定,即让波动相对稳定,消除异方差问题。
import numpy as np
import pandas as pd
array_data=np.array([[1, 2, 3, 4, 5],
[0.1,0.2,0.3,0.4,0.5])
print(array_data.shape)
array_data2log = -np.log(array_data) # 取对数之后不会改变数据的性质和相关关系,但压缩了变量的尺度。让方差恒定,即让波动相对稳定。消除异方差问题
print(array_data2log)
dis = np.sqrt(array_data2log)
print(dis)
更新……
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。