CV:基于Keras利用cv2+自定义(加载人脸识别xml文件)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label

CV:利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label

 

 

 

目录

输出结果

设计思路

核心代码

相关案例推荐


 

 

 

输出结果

 

设计思路

 

 

核心代码

#CV:基于Keras利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label——Jason Niu
import sys

import cv2
from keras.models import load_model
import numpy as np

image_path ="F:/File_Python/Resources/hezhao05.jpg"
detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
emotion_labels = get_labels('fer2013') 
gender_labels = get_labels('imdb')      
font = cv2.FONT_HERSHEY_SIMPLEX   

gender_offsets = (30, 60) 
gender_offsets = (10, 10)  
emotion_offsets = (20, 40)
emotion_offsets = (0, 0)

face_detection = load_detection_model(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
gender_classifier = load_model(gender_model_path, compile=False)


emotion_target_size = emotion_classifier.input_shape[1:3] 
gender_target_size = gender_classifier.input_shape[1:3]

rgb_image = load_image(image_path, grayscale=False)  
gray_image = load_image(image_path, grayscale=True) 
gray_image = np.squeeze(gray_image) 
gray_image = gray_image.astype('uint8') 

faces = detect_faces(face_detection, gray_image)

for face_coordinates in faces: 
    x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
    rgb_face = rgb_image[y1:y2, x1:x2]    

    x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
    gray_face = gray_image[y1:y2, x1:x2]  

    try:
        rgb_face = cv2.resize(rgb_face, (gender_target_size))
        gray_face = cv2.resize(gray_face, (emotion_target_size))
    except:
        continue
    rgb_face = preprocess_input(rgb_face, False)
    rgb_face = np.expand_dims(rgb_face, 0)   
    gender_prediction = gender_classifier.predict(rgb_face)  
    gender_label_arg = np.argmax(gender_prediction)
    gender_text = gender_labels[gender_label_arg]   

    gray_face = preprocess_input(gray_face, True)
    gray_face = np.expand_dims(gray_face, 0)
    gray_face = np.expand_dims(gray_face, -1)
    emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
    emotion_text = emotion_labels[emotion_label_arg]

    if gender_text == gender_labels[0]: 
        color = (255, 255, 0)
    else:
        color = (255, 0, 0)

    draw_bounding_box(face_coordinates, rgb_image, color)  
    draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
    draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)
 
bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR) 
save_img='F:/File_Python/Resources/hezhao041.jpg'
cv2.imwrite(save_img, bgr_image)

cv2.imshow('Emotion and Gender test', rgb_image)  

cv2.waitKey(0)
cv2.destroyAllWindows()  

 

相关案例推荐

类似案例:https://blog.csdn.net/qq_41185868/article/details/90488469




相关文章
CV:利用cv2+自定义load_detection_model(加载人脸识别xml文件及detectMultiScale函数得到人脸列表)+keras的load_model(加载表情hdf5、性别hdf5)实现标注脸部表情和性别label

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
我通过web代码实时加载模型进行预测,但报如下错误 Traceback (most recent call last): File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1997, in __call__ return self.wsgi_app(environ, start_response) File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1985, in wsgi_app response = self.handle_exception(e) File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1540, in handle_exception reraise(exc_type, exc_value, tb) File "/root/anaconda3/lib/python3.6/site-packages/flask/_compat.py", line 33, in reraise raise value File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1982, in wsgi_app response = self.full_dispatch_request() File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1614, in full_dispatch_request rv = self.handle_user_exception(e) File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1517, in handle_user_exception reraise(exc_type, exc_value, tb) File "/root/anaconda3/lib/python3.6/site-packages/flask/_compat.py", line 33, in reraise raise value File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1612, in full_dispatch_request rv = self.dispatch_request() File "/root/anaconda3/lib/python3.6/site-packages/flask/app.py", line 1598, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "/root/anaconda3/code/App.py", line 41, in predict model=load_model(root_path+model_name) File "/root/anaconda3/lib/python3.6/site-packages/keras/models.py", line 249, in load_model topology.load_weights_from_hdf5_group(f['model_weights'], model.layers) File "/root/anaconda3/lib/python3.6/site-packages/keras/engine/topology.py", line 3008, in load_weights_from_hdf5_group K.batch_set_value(weight_value_tuples) File "/root/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2189, in batch_set_value get_session().run(assign_ops, feed_dict=feed_dict) File "/root/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 895, in run run_metadata_ptr) File "/root/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1071, in _run + e.args[0]) TypeError: Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder:0", shape=(1, 16), dtype=float32) is not an element of this graph.
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值