ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT、RFR、ExtraTR、GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能

ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT、RFR、ExtraTR、GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能

 

 

 

目录

输出结果

设计思路

核心代码


 

 

 

 

输出结果

Boston House Prices dataset
===========================
 
Notes
------
Data Set Characteristics:  
 
    :Number of Instances: 506 
 
    :Number of Attributes: 13 numeric/categorical predictive
    
    :Median Value (attribute 14) is usually the target
 
    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.
The Boston house-price data has been used in many machine learning papers that address regression
problems.   
     
**References**
   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
   - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

 

 

 

设计思路

 

核心代码

class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin):
    """A decision tree regressor.
    
    Read more in the :ref:`User Guide <tree>`.
    
    Parameters
    ----------
    criterion : string, optional (default="mse")
    The function to measure the quality of a split. Supported criteria
    are "mse" for the mean squared error, which is equal to variance
    reduction as feature selection criterion and minimizes the L2 
     loss
    using the mean of each terminal node, "friedman_mse", which 
     uses mean
    squared error with Friedman's improvement score for potential 
     splits,
    and "mae" for the mean absolute error, which minimizes the L1 
     loss
    using the median of each terminal node.


class RandomForestRegressor(ForestRegressor):
    """A random forest regressor.
    
    A random forest is a meta estimator that fits a number of classifying
    decision trees on various sub-samples of the dataset and use averaging
    to improve the predictive accuracy and control over-fitting.
    The sub-sample size is always the same as the original
    input sample size but the samples are drawn with replacement if
    `bootstrap=True` (default).
    
    Read more in the :ref:`User Guide <forest>`.


class ExtraTreesRegressor(ForestRegressor):
    """An extra-trees regressor.
    
    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and use averaging to improve the predictive accuracy
    and control over-fitting.
    
    Read more in the :ref:`User Guide <forest>`.




class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin):
    """Gradient Boosting for regression.
    
    GB builds an additive model in a forward stage-wise fashion;
    it allows for the optimization of arbitrary differentiable loss functions.
    In each stage a regression tree is fit on the negative gradient of the
    given loss function.
    
    Read more in the :ref:`User Guide <gradient_boosting>`.



 

 

 

一个处女座的程序猿 CSDN认证博客专家 华为杯研电赛一等 华为研数模一等奖 国内外AI竞十
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值